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1 Introduction

Domain decomposition methods (DDM) using classical transmission conditions that
work well for purely elliptic problems can have poor performance when applied to
singularly-perturbed equations of advection-diffusion type. To face this challenge,
adaptive Dirichlet-Neumann and Robin-Neumann algorithms were introduced in
[2], accounting for transport along characteristics. Good convergence properties
were also reported in the discrete setting for damped versions [6]. Non-overlapping
DDMs of Schwarz-type applied to advection-diffusion equations were analyzed e.g.
in [9, 1] and a stabilized finite-element method for singularly perturbed problems is
discussed in [8], see also [3, 4] and references therein for heterogeneous couplings.

Our goal is to develop Robin transmission conditions (TCs) such that a finite-
volume based non-overlapping DDM is consistent and asymptotic-preserving (AP).
Consistent here means that, for fixed mesh size, the discrete DDM iterates converge
to the discrete solution on the entire domain, and AP means that the singular limit
in the DDM yields a convergent limit DDM (for more on AP, see e.g. [7]). We
will also show that the continuous DDM satisfies the AP property. In particular, the
continuous and discrete DDM are APwhen the TC at the outflow boundary vanishes,
as already discussed in [8]. Surprisingly and in contrast to the continuous algorithm,
the AP property for the discrete DDM can be obtained without the restrictions on
the parameters in the TC at the continuous level, see Theorem 3.
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2 The continuous problem and non-overlapping DDM

We consider for a ≥ 0, 0 > 0 and 5 ∈ !2 (−1, 1) the stationary advection-diffusion
equation with homogeneous Dirichlet boundary conditions, i.e.,

L(D) := amGGD − 0mGD = 5 in Ω := (−1, 1), D(−1) = 0 , aD(1) = 0 . (1)

In the singular limit a = 0, the PDE in (1) becomes (trivially) advective, and the
boundary condition collapses into the inflow condition D(−1) = 0 only. It is easy to
see that there exists a unique weak solution D ∈ �1 (−1, 1) of (1) for a ≥ 0.

We apply a non-overlapping DDM with two sub-domains Ω1 = (−1, 0) and
Ω2 = (0, 1) to (1). The problem (1) is then rewritten using at G = 0 the Robin TCs

B1 (D) = amGD − 0D + _D , B2 (D) = −amGD + 0D + _D , _ > 0 . (2)

Definition 1 (Continuous DDM)
Let D0

2 ∈ �
1 (Ω2). For = ∈ IN, the =-th (continuous) DDM-iterate (D=1 , D

=
2 ) ∈

�1 (−1, 0) × �1 (0, 1) is given as solution of

amGGD
=
9 − 0mGD=9 = 5 in Ω 9 , 9 = 1, 2 , (3)

D=1 (−1) = 0 , aD=2 (1) = 0 , (4)

aB1 (D=1 ) = aB1 (D=−1
2 ) , B2 (D=2 ) = B2 (D=1 ) at G = 0 . (5)

Note that (3)-(5) is equivalent to (1) in the limit =→∞. In the limit when a → 0,
we get the stationary advection equation on both sides, and the two Robin TCs (5)
degenerate into one Dirichlet TC. Note that the multiplication ofB1 by a is necessary
to remove the TC in the limit a → 0. Otherwise, the result in Theorem 1 below for
a = 0 holds iff _ = 0.

The errors 4=
9

:= D |Ω 9
− D=

9
satisfy (3)-(5) with 5 ≡ 0 due to linearity. Therefore,

we have by direct solution

4=1 (G) = �
=
1 (e

0G/a − e−0/a) , 4=2 (G) = �
=
2 (1 − e0 (G−1)/a) if a > 0 ,

4=1 ≡ 0 , 4=2 ≡ �
=
2 if a = 0 ,

where �=1 , �
=
2 ∈ IR satisfy the recurrence relations

�=1 =
−0+_(1−e−0/a)

0e−0/a+_(1−e−0/a) �
=−1
2 , �=2 =

−0e−0/a+_(1−e−0/a)
0+_(1−e−0/a) �=1 if a > 0 ,

0(_ − 0)0 = 0(_ − 0)�=−1
2 , (0 + _)�=2 = (0 + _)0 if a = 0 .

This yields the following convergence result.

Theorem 1 (Convergence and AP property of the continuous DDM)
The sequence of continuous DDM-iterates {(D=1 , D

=
2 )}=∈IN converges pointwise to

(D |Ω1 , D |Ω2 ). For a > 0, the convergence is linear with convergence factor
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d =

���� (0 − _) + _e−0/a

(0 + _) − _e−0/a

���� ����_ − (0 + _)e−0/a_ + (0 − _)e−0/a

���� < 1 . (6)

Convergence in one iteration is achieved iff _ = 0

1−e−0/a or in the case a = 0.
The continuous DDM (3)-(5) is AP if _ = _(a) satisfies |_ − 0 | = >(1) as a → 0.

3 Cell-centered finite volume discretization

We discretize (1) and (3)-(5) by a cell-centered finite volume method. For given
� ∈ IN, let the step-width be ℎ := 1/� and the volumes +8 := [8ℎ, (8 + 1)ℎ] for
−� ≤ 8 < � be given. Furthermore, define 58 :=

∫
+8
5 (G) 3G. We denote the constant,

cell-centered approximation of D in +8 by D8 , and encapsulate these for all +8 in the
vector u := (D8)�−1

8=−� ∈ IR2� . Using centered differences for the diffusion and upwind
fluxes for the advection, the discrete version of problem (1) reads

a
ℎ
(D8−1 − 2D8 + D8+1) + 0(D8−1 − D8) = 58 for −� < 8 < � − 1, (7)

a
ℎ
(−3D−� + D−�+1) − 20D−� = 5−� , (8)

a
ℎ
(D�−2 − 3D�−1) + 0(D�−2 − D�−1) = 5�−1 . (9)

Here, we eliminated the ghost values D−�−1 and D� using a linear interpolation of the
boundary conditions. Analogously, one obtains the discrete version of (3) and (4),
while (5) becomes

�1 (u=1 ) = �1 (u=−1
2 ) , �2 (u=2 ) = �2 (u=1 ) . (10)

It remains to discretize the TC (2) to obtain �1, �2, and then to eliminate the ghost
values D1,0 and D2,−1. For this, we use centered differences for the diffusion and
linear combinations of the values in +−1 and +0 for the other terms to obtain

�1 (u) = a
ℎ
(D0 − D−1) − 0((1 − U1)D−1 + U1D0) + _((1 − V1)D−1 + V1D0) , (11)

�2 (u) = − aℎ (D0 − D−1) + 0((1 − U2)D−1 + U2D0) + _((1 − V2)D−1 + V2D0) , (12)

for some U1, U2, V1, V2 ∈ [0, 1]. Note that U 9 = V 9 = 0, 9 = 1, 2, is an upwind
discretization, while the centered choice U 9 = V 9 = 1/2, 9 = 1, 2, is typically used
in the diffusion-dominated case a � 0 to obtain second-order convergence in ℎ.

To eliminate the ghost values D1,0 and D2,−1 in (7), we solve (11) for D0 and (12)
for D−1. To eliminate D2,−1 in (11) and D1,0 in (12), we solve (7) for D1,0 and D2,−1.
Inserting the resulting expressions and using (10), we obtain the following discrete
DDM iteration.

Definition 2 (Discrete DDM)

For given u0
2 ∈ IR� , let �̃1 (u0

2) := a�1 (u0
2)

a−0ℎU1+_ℎV1
. For = ∈ IN, the =-th discrete

DDM-iterate (u=1 , u
=
2 ) ∈ (IR

� )2 satisfies
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a
ℎ
(D=9,8−1 − 2D=9,8 + D=9,8+1) + 0(D

=
9,8−1 − D

=
9,8) = 58 , (13)

for 9 = 1, −� < 8 < −1 and for 9 = 2, 0 < 8 < � − 1,

a
ℎ
(−3D=1,−� + D

=
1,−�+1) − 20D=1,−� = 5−� , (14)

a
ℎ
(D=2,�−2 − 3D=2,�−1) + 0(D

=
2,�−2 − D

=
2,�−1) = 5�−1 , (15)

a
ℎ

(
D=1,−2 − 2D=1,−1

)
+ 0(D=1,−2 − D

=
1,−1) + aℎ 21D

=
1,−1 = 5−1 − �̃1 (u=−1

2 ) , (16)
a
ℎ

(
− 2D=2,0 + D

=
2,1

)
− 0D=2,0 +

(
a
ℎ
+ 0

)
22D

=
2,0 = 50 − �̃2 (u=1 ) , (17)

where

�̃1 (u=2 ) = a
ℎ
D=2,0 − a

a+0ℎ 21
(
50 − a

ℎ
(−2D=2,0 + D

=
2,1) + 0D

=
2,0

)
, (18)

�̃2 (u=1 ) =
(
a
ℎ
+0

)
D=1,−1 − a+0ℎ

a
22

(
5−1 − a

ℎ
(D=1,−2−2D=1,−1) − 0(D

=
1,−2−D

=
1,−1)

)
, (19)

21 =
a
ℎ
+0 (1−U1)−_(1−V1)
a
ℎ
−0U1+_V1

, 22 =
a
ℎ
−0U2−_V2

a
ℎ
+0 (1−U2)+_(1−V2)

. (20)

Note that (13)-(19) is uniquely solvable for all a ≥ 0 iff 21 = O(1/a) and 22 = O(a)
as a → 0. The resulting systemmatrix for u=2 is weakly chained diagonally dominant,
and thus non-singular. The same holds for u=1 if 21 ≤ 1. Further note that �̃1 and �̃2 in
(16)-(19) are discrete Robin-to-Dirichlet operators, so that 21 = 22 = 0 corresponds
to Dirichlet TCs, which do not lead to convergence without overlap.

We next investigate how the coefficients U 9 , V 9 , 9 = 1, 2, must be chosen to obtain
a discrete DDM that is consistent with (7)-(9). Since the discretization (13)-(15) is
the same as (7)-(9), consistency follows iff the solution to (16)-(19) in the limit when
=→∞ satisfies (7) and vice versa. The solution u of (7)-(9) solves (16)-(19), as can
be directly seen when inserting it into (16)-(19) using (7) for 8 = −1, 0. This only
requires that a21 and 22/a are well-defined for all a ≥ 0 and all _ > 0. On the other
hand, combining (16) and (18) as well as (17) and (19) yields

a
ℎ
(D1,−2 − 2D1,−1 + D2,0) + 0(D1,−2 − D1,−1)

= 5−1 + a
a+0ℎ 21

(
50 − a

ℎ
(D1,−1 − 2D2,0 + D2,1) − 0(D1,−1 − D2,0)

)
,

a
ℎ
(D1,−1 − 2D2,0 + D2,1) + 0(D1,−1 − D2,0)

= 50 + a+0ℎa 22
(
5−1 − a

ℎ
(D1,−2 − 2D1,−1 + D2,0) − 0(D1,−2 − D1,−1)

)
.

Inserting the left-hand sides into the right-hand sides of the other equation, we obtain
equivalence with (7) iff 1 ≠ 2122. Hence, we have proved the following Theorem
which provides choices for the TC parameters U1, U2, V1, V2 that ensure consistency
for all _ > 0 and a ≥ 0.

Theorem 2 (Consistency of the discrete DDM)
The limit of the discrete DDM iterates (13)-(19) as =→∞ is equal to the solution

u of (7)-(9) for all _ > 0 if the following conditions hold:

(A1) U1 <
a
0ℎ

(or equal if V1 > 0), and
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(A2) a21 = O(1) as a → 0 , i.e. by (A1), a = O(a − 0ℎU1 + _ℎV1) , and
(A3) 1 = O(2 − U2 − V2) , and
(A4) 22 = O(a) as a → 0 , i.e. by (A3), U2 + V2 = O(a) , and
(A5) 2122 ≠ 1, i.e.,

0 ≠ 02 (U2 − U1) + _
( 2a
ℎ
+ 0(V1 + V2 − U1 − U2)

)
+ _2 (V1 − V2) .

Remark 1 Note that the simplest choice of the coefficients, which satisfies Theorem 2
is U1 = U2 = V2 = 0 and V1 = 1/2. As shown below, this also yields convergence
for any positive discrete Peclet number Pe := 0ℎ/a > 0. Furthermore, this choice
ensures that the discrete DDM is AP as a → 0 for any _ > 0, as we show next.

We split the convergence analysis of the discrete DDM given in definition 2 into
two regimes due to the different types of solutions: the elliptic case a > 0 and the
singular limit a = 0. For this, let e= := u− (u=1 , u

=
2 ) be the error of the discrete DDM

at iteration =. By linearity, e= satisfies the discrete DDM (13)-(19) with f = 0.
The elliptic case a > 0 : Then, (13)-(15) for e= yield the solution

e= =
(
�=1

(
b (8+1)ℎ −

(
1 + Pe

2
)
b−1)−1

8=−� , �
=
2
(
1 + Pe

2 − b
(8+1)ℎ−1) �−1

8=0

)
,

where we defined b := (1 + Pe)� . The constants �=1 , �
=
2 ∈ IR are determined by

(16)-(19), which yield the recurrence relations

�=1 = −
_−0+

(
0U1−_(Pe−1+V1)

) 2Pe
2+Pe b

−1(
0U1−_(Pe−1+V1)

) 2Pe
2+Pe+(_−0) b

−1
�=−1

2 , �=2 =
0U2+_(Pe−1+V2)−(_+0) 2+Pe

2Pe b
−1

(_+0) 2+Pe
2Pe −

(
0U2+_(Pe−1+V2)

)
b−1

�=1 .

Therefore, the iteration is linearly convergent iff

d =

�����_ − 0 +
(
0U1 − _(Pe−1 + V1)

) 2Pe
2+Peb

−1

_ + 0 −
(
0U2 + _(Pe−1 + V2)

) 2Pe
2+Peb

−1

�����
����� 0U2 + _(Pe−1 + V2) − (_ + 0) 2+Pe

2Pe b
−1

0U1 − _(Pe−1 + V1) + (_ − 0) 2+Pe
2Pe b

−1

����� < 1 . (21)

Note that convergence in one iteration is possible for the choice

_ = _opt :=
2a + 0ℎ − 2U10ℎb

−1

2a + 0ℎ − 2 (a + V10ℎ) b−1 0
ℎ→0−→ 0

1 − 4−0/a
, (22)

which is almost mesh independent when U1 = 0 and V1 = 1/2. This is consistent
with the continuous DDM and also yields _opt → 0 as a → 0.

Furthermore, note that (21) for U1 = U2 = 0 and V1 = V2 = 1/2 is satisfied for
all _ > 0. But V2 = 1/2 does not satisfy (A4) of Theorem 2, so that �̃2 (and thus
d) degenerate when a → 0. However, choosing U1 = U2 = V2 = 0 and V1 = 1/2,
Theorem 2 is satisfied for all a > 0, and (21) simplifies to the condition��_(1− b−1) − 0

�� ��_( 2
2+Pe − b

−1) − 0b−1�� < (
_(1− 2

2+Peb
−1) + 0

) (
_(1− b−1) + 0b−1) ,

which is satisfied for all _ > 0 due to Pe > 0.
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The singular limit a = 0 : Then, (13)-(15) for e= yields

e= =
(
(0)−2

8=−� , �
=
1 , (�

=
2 )
�−1
8=0

)
,

with �=1 , �
=
2 ∈ IR determined by (16)-(19). To obtain �1

1 = 0, i.e., the correct solution
in Ω1, this requires by (16)

0 = �1
1 =

−�̃1 (e0)
a
ℎ
21−0

, �̃1 (e0
2) =

a�1 (e0
2)

a−0ℎU1+_ℎV1
.

Since a21 = O(1) as a → 0 by (A2), this holds iff lima→0 a21 ≠ 0ℎ and
lima→0 a/(a − 0ℎU1 + _ℎV1) = 0. Using (A1), this simplifies to a/V1 = >(1) as
a → 0 and implies 21 = >(1). For �1

2, we then obtain by (17)-(19)

0(22 − 1)�1
2 = −0

(
1 − a+0ℎ

a
22

)
�1

1 .

By (A4) of Theorem 2, this yields �1
2 = 0, i.e., convergence in one iteration. Then,

�=1 = �
=
2 = 0 for all = > 2 follows by induction using (16)-(19).

Summarizing the above analysis, we obtain the following result.

Theorem 3 (Convergence and AP property of the discrete DDM)
Let (A1)-(A5) from Theorem 2 be satisfied. The sequence of discrete DDM iterates

{(u=1 , u
=
2 )}=∈IN from (13)-(19) converges linearly to the solution of (7)-(9) for a > 0

iff (21) is satisfied.
Convergence in one iteration is achieved if _ satisfies (22) or for a = 0 if the limit
discrete DDM for a/V1 = >(1) as a → 0 is used.
The discrete DDM (13)-(19) is AP if |_ − 0 | = >(1) or a/V1 = >(1) as a → 0.

Note that as shown above, the choice U1 = U2 = 0 and V1 = V2 = 1/2 yields linear
convergence for a > 0, but the convergence rate degenerates for a → 0. The choice
U1 = U2 = V2 = 0 and V1 = 1/2 leads to linear convergence for a > 0 uniformly in a
with 1-step convergence for a = 0, and thus is AP.

4 Numerical example

We now study numerically the convergence properties of the discrete DDM as a → 0
for various choices of the parameters in the discrete TCs. Since U 9 = O(a), 9 = 1, 2,
is required for convergence, we restrict our study to U1 = U2 = 0 and vary only V1,
V2 and _.

We consider (1) for 5 (G) = −a(:c)2 sin(:cG) − 0:c cos(:cG), which leads to
the exact solution D(G) = sin(:cG). We fix 0 = 1, : = 3, �1 (D0

2) = 1 and � = 100,
and study the number of iterations required to reach an error of ‖e=‖∞ < 10−12, see
Fig. 1. As discussed above, the choice V1 = V2 = 1/2 leads to a degeneration as
a → 0, while the choice V1 = V2 = min(1/2, a/(0ℎ)) yields linear convergence,
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Fig. 1 Number of iterations for various choices of V1 and V2.

but is only asymptotic preserving for _ → 0. As predicted by Theorem 3, the
convergence improves for all choices such that a/V1 = >(1) and V2 = O(a) as
a → 0. In particular, the number of iterations decreases faster when V1 is large,
which illustrates well the convergence factor d in (21), which satisfies

d =
|_−0 |
_+0 O

(
a

a+V1

)
+ O

(
a�−1) .

5 Conclusion

The continuous non-overlapping DDM with Robin TC applied to singularly-
perturbed advection-diffusion problems is asymptotic preserving only when the
transmission parameter _ tends to the advection speed as a → 0. A discrete DDM
based on a cell-centered finite volume method can inherit this property. In fact, the
discretization of the TC even permits an improved convergence behavior. In con-
trast to the continuous algorithm, a proper, but asymmetric choice of the discrete
parameters (U 9 , V 9 , 9 = 1, 2) yields the AP property without any restriction on
the transmission parameter _, see Theorem 3. Finally, we illustrated the theoretical
results by a numerical example. In the forthcoming work [5] we will exploit our
findings to construct a robust DDM for nonlinear convection-diffusion equations.
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